Karush-Kuhn-Tuker Type Conditions for Optimality of Non-Smooth Multiobjective Semi-Infinite Programming
نویسنده
چکیده
Abstract In this paper, for a nonsmooth semi-infinite multiobjective programming with locally Lipschitz data, some weak and strong Karush-KuhnTucker type optimality conditions are derived. The necessary conditions are proposed under a constraint qualification, and the sufficient conditions are explored under assumption of generalized invexity. All results are expressed in terms of Clarke subdifferential.
منابع مشابه
Necessary Optimality and Duality for Multiobjective Semi-infinite Programming
The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programm...
متن کاملNon-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملOn strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints
In this paper, we consider a nonsmooth multiobjective semi-infinite programming problem with vanishing constraints (MOSIPVC). We introduce stationary conditions for the MOSIPVCs and establish the strong Karush-Kuhn-Tucker type sufficient optimality conditions for the MOSIPVC under generalized convexity assumptions.
متن کاملDuality for Nondifferentiable Multiobjective Semi-infinite Programming with Generalized Convexity
The purpose of this paper is to consider the Mond-Weir type dual model for a class of non-smooth multiobjective semi-infinite programming problem. In this work, we use generalization of convexity namely ( , ) G F θ − convexity and Kuhn-Tucker constraint qualification, to prove new duality results for such semi-infinite programming problem. Weak, strong and converse duality theorems are derived....
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کامل